viernes, 5 de mayo de 2017

2.3 Las cónicas

2.3. Las cónicas

Apolonio estudió las secciones de un cono a las que denominó cónicas. Descubrió que se obtenía al cortar mediante una superficie plana , un cono circularen diversas posiciones. Es decir, una cónica son todas las curvas resultantesde las diferentes intersecciones entre un cono y un plano.

Dependiendo de su corte, las secciones resultantes serán:
  • Círculo: si el plano que corta a la superficie es perpendicular al eje.
  • Elipses: si inclinamos el plano de modo que sea oblicuo con el eje y corte a todas las generatrices.
  • Hipérbolas: si continuamos girando el plano de modo que sea oblicuo copn el eje y que sea paralelo a una generatriz.
  • Parábolas: si inclinamos aún más el plano, de modo que sea por igual a dos generatrices resulta una curva con dos ramas, la parábola.

La circunferencia:
La palabra circunferencia es un término que utilizamos para definir a una línea curva cerrada, que se caracteriza por la ubicación de sus puntos, ya que éstos se encuentran localizados a la misma distancia de otro punto llamado centro. La circunferencia a su vez, se encuentra integrada por un conjunto de elementos, algunos de ellos son: el radio, el diámetro la cuerda y el arco.


La elipse:
La elipse es una curva cerrada y achatada, simétrica respecto a dos ejes perpendiculares entre sí.
  • Obtención en un cono: debemos de dibujar un circulo de centro C y un punto S en el interior del círculo. Desde cualquier punto Q de la circunferencia se traza la perpendicular a SQ. El conjunto de dichas rectas envuelve a un elipse. Cuanto más cerca esté S de C, más parecida a una circunferencia será la elipse obtenida (menor será su excentricidad).
  • Método de jardinero: este método sirve para trazar elipses en el suelo de gran tamaño. Primero, es necesario dibujar dos ejes principales perpendiculares principales. A contiuación se debe indicar dos puntos sobre el eje focal que estén a la misma distancia del centro, que indicarán la posición de nuestros focos. Después se colocan dos cinchetas en los dos puntos. Seguidamente, es necesario poner cada extremo de una cuerda en el punto del foco indicado. Se traza la figura que veréis en el vídeo con la cuerda ensa. Finalmente segitemos la cuerda con un lápiz y obtendremos nuestra elipse.

  • Mesa de billar elíptica:


No hay comentarios:

Publicar un comentario

Introducción

Hola, este blog pertenece a los alumnos de 3ºD de la E.S.O. de San Juan Bautista. Vamos a hablar sobre la geometría, Esperemos qu...